Fast and Accurate Likelihood Ratio Based Biometric Comparison in the Encrypted Domain
نویسندگان
چکیده
As applications of biometric verification proliferate, users become more vulnerable to privacy infringement. Biometric data is very privacy sensitive as it may contain information as sex, ethnicity and health conditions which should not be shared with third parties during the verification process. Moreover, biometric data that has fallen into the wrong hands often leads to identity theft. Secure biometric verification schemes try to overcome such privacy threats. Unfortunately, existing secure solutions either introduce a heavy computational or communicational overhead, or have to accept a high loss in accuracy; both of which make them impractical in real-world settings. This paper presents a novel approach to secure biometric verification aiming at a practical trade-off between efficiency and accuracy, while guaranteeing full security against honest-but-curious adversaries. The system performs verification in the encrypted domain using elliptic curve based homomorphic ElGamal encryption for high efficiency. Classification is based on a log-likelihood ratio classifier which has proven to be very accurate. No private information is leaked during the verification process using a two-party secure protocol. Initial tests show highly accurate results that have been computed within milliseconds range.
منابع مشابه
Image encryption based on chaotic tent map in time and frequency domains
The present paper is aimed at introducing a new algorithm for image encryption using chaotic tent maps and the desired key image. This algorithm consists of two parts, the first of which works in the frequency domain and the second, in the time domain. In the frequency domain, a desired key image is used, and a random number is generated, using the chaotic tent map, in order to change the phase...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملPrivate Key based query on encrypted data
Nowadays, users of information systems have inclination to use a central server to decrease data transferring and maintenance costs. Since such a system is not so trustworthy, users' data usually upkeeps encrypted. However, encryption is not a nostrum for security problems and cannot guarantee the data security. In other words, there are some techniques that can endanger security of encrypted d...
متن کاملComparison of various Feature encoding schemes for Implementation of Secured Biometric Template
316 Abstract— This paper provides a comparison among different feature encoding schemes used for implementation of biometric system using Iris pattern and suggests which feature encoding scheme is best suited for the creation of biometric template. This paper also proposes an encryption method to secure the templates. The advantage of using an encryption is that, neither the biometric template ...
متن کاملCalculation of One-dimensional Forward Modelling of Helicopter-borne Electromagnetic Data and a Sensitivity Matrix Using Fast Hankel Transforms
The helicopter-borne electromagnetic (HEM) frequency-domain exploration method is an airborne electromagnetic (AEM) technique that is widely used for vast and rough areas for resistivity imaging. The vast amount of digitized data flowing from the HEM method requires an efficient and accurate inversion algorithm. Generally, the inverse modelling of HEM data in the first step requires a precise a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.09936 شماره
صفحات -
تاریخ انتشار 2016